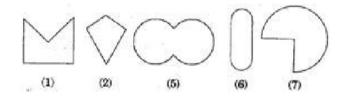

<u>Exercise 3.1 (Revised) - Chapter 3 - Understanding Quadrilaterals - Ncert</u> <u>Solutions class 8 - Maths</u>

Updated On 11-02-2025 By Lithanya

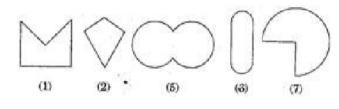
NCERT Solutions for Class 8 Maths Chapter 3 -Understanding Quadrilaterals

Ex 3.1 Question 1.

Given here are some figures:

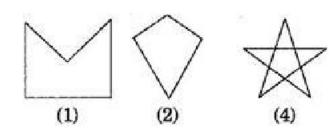


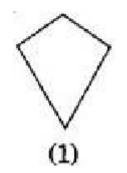
Classify each of them on the basis of the following:

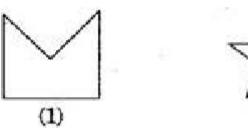

- (a) Simple curve
- (b) Simple closed curve
- (c) Polygon
- (d) Convex polygon
- (e) Concave polygon

Answer.

(a) Simple curve


(b) Simple closed curve


(c) Polygons



(d) Convex polygons

(e) Concave polygon


```
Ex 3.1 Question 2.
```

What is a regular polygon? State the name of a regular polygon of:

(a) 3 sides

(b) 4 sides

(c) 6 sides

Answer.

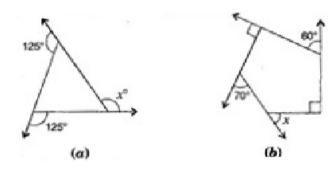
A regular polygon: A polygon having all sides of equal length and the interior angles of equal size is known as regular polygon.

(i) 3 sides

Polygon having three sides is called a triangle. (ii) 4 sides

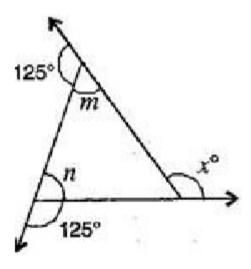
Polygon having four sides is called a quadrilateral. (iii) 6 sides

Polygon having six sides is called a hexagon.


<u>Exercise 3.2 (Revised) - Chapter 3 - Understanding Quadrilaterals - Ncert</u> <u>Solutions class 8 - Maths</u>

Updated On 11-02-2025 By Lithanya

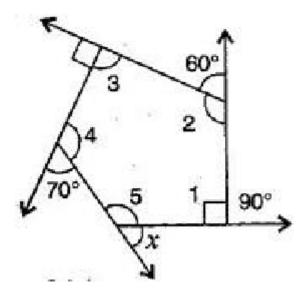
NCERT Solutions for Class 8 Maths Chapter 3 -Understanding Quadrilaterals


Ex 3.2 Question 1.

Find x in the following figures:

(a) Here, $125^\circ + m = 180^\circ$ [Linear pair]

 $\Rightarrow m = 180^{\circ} - 125^{\circ} = 55^{\circ}$ And $125^{\circ} + n = 180^{\circ}$ [Linear pair] $\Rightarrow n = 180^{\circ} - 125^{\circ} = 55^{\circ}$ \therefore Exterior angle $x^{\circ} =$ Sum of opposite interior angles $\therefore x^{\circ} = 55^{\circ} + 55^{\circ} = 110^{\circ}$ (b) Sum of the angles of a pentagon


(b) Sum of the angles of a pentagon

- $=(n-2) imes 180^\circ$
- $=(5-2) imes180^\circ$

$$=3 imes180^\circ=540^\circ$$

Get More Learning Materials Here : 📕

By linear pairs of angles,

 $\begin{array}{l} \angle 1 + 90^{\circ} = 180^{\circ} \\ \angle 2 + 60^{\circ} = 180^{\circ} \\ \angle 3 + 90^{\circ} = 180^{\circ} \\ \angle 4 + 70^{\circ} = 180^{\circ} \\ \angle 5 + x = 180^{\circ} \end{array}$ Adding eq. (i), (ii), (iii), (iv) and (v), $x + (\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5) + 310^{\circ} = 900 \\ \Rightarrow x + 540^{\circ} + 310^{\circ} = 900^{\circ} \end{array}$

 $\Rightarrow x + 850^{\circ} + 850^{\circ} = 900^{\circ}$ $\Rightarrow x + 850^{\circ} - 850^{\circ} = 50^{\circ}$

Ex 3.2 Question 2.

Find the measure of each exterior angle of a regular polygon of:

(a) 9 sides

(b) 15 sides

Answer.

(i) Sum of angles of a regular polygon $= (n - 2) \times 180^{\circ}$ = $(9 - 2) \times 180^{\circ} = 7 \times 180^{\circ} = 1260^{\circ}$ Each interior angle $= \frac{\text{Sum of interior angles}}{\text{Number of sides}} = \frac{1260^{\circ}}{9} = 140^{\circ}$ Each exterior angle $= 180^{\circ} - 140^{\circ} = 40^{\circ}$ (ii) Sum of exterior angles of a regular polygon $= 360^{\circ}$

Each exterior angle = 360/15= 24 degrees

Ex 3.2 Question 3.

How many sides does a regular polygon have, if the measure of an exterior angle is 24° ?

Answer.

Let number of sides be n.

Sum of exterior angles of a regular polygon = 360° Number of sides = $\frac{\text{Sum of exterior angles}}{\text{Each interior angle}} = \frac{360^{\circ}}{24^{\circ}} = 15$

Hence, the regular polygon has 15 sides.

Ex 3.2 Question 4.

How many sides does a regular polygon have if each of its interior angles is 165° ?

Answer.

Let number of sides be n.

Exterior angle $=180^\circ-165^\circ=15^\circ$

Sum of exterior angles of a regular polygon = 360° Number of sides = $\frac{\text{Sum of exterior angles}}{\text{Each interior angle}} = \frac{360^{\circ}}{15^{\circ}} = 24$

Hence, the regular polygon has 24 sides.

Ex 3.2 Question 5.

(a) Is it possible to have a regular polygon with of each exterior angle as 22° ? (b) Can it be an interior angle of a regular polygon? Why?

Answer.

(a) No. (Since 22 is not a divisor of 360°) (b) No, (Because each exterior angle is $180^\circ - 22^\circ = 158^\circ$: which is not a divisor of 360°)

Ex 3.2 Question 6.

(a) What is the minimum interior angle possible for a regular polygon? Why?

(b) What is the maximum exterior angle possible for a regular polygon?

Answer.

(a) The equilateral triangle being a regular polygon of 3 sides has the least measure of an

interior angle of $60^\circ.$

 \therefore Sum of all the angles of a triangle

 $=180^{\circ}$

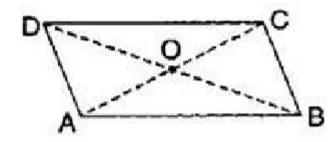
 $\therefore x + x + x = 180^{\circ}$

 $\Rightarrow 3x = 180^{\circ}$

 $\Rightarrow x = 60^{\circ}$

(b) By (a), we can observe that the greatest exterior angle is $180^\circ-60^\circ$

 $=120^{\circ}.$

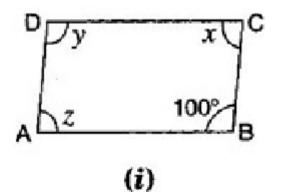

<u>Exercise 3.3 (Revised) - Chapter 3 - Understanding Quadrilaterals - Ncert</u> <u>Solutions class 8 - Maths</u>

Updated On 11-02-2025 By Lithanya

NCERT Solutions for Class 8 Maths Chapter 3 -Understanding Quadrilaterals

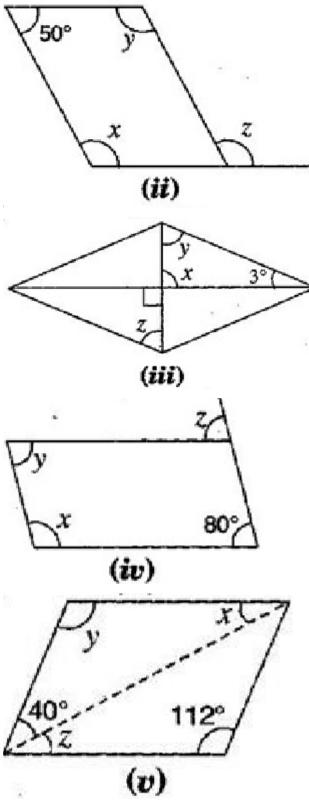
Ex 3.3 Question 1.

Given a parallelogram ABCD. Complete each statement along with the definition or property used.

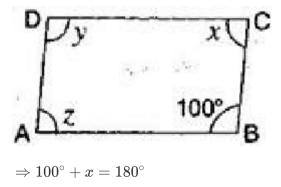


(i) AD =(ii) $\angle DCB =$ (iii) OC =(iv) $m \angle DAB + m \angle CDA =$ **Answer.**


(i) AD = BC[Since opposite sides of a parallelogram are equal] (ii) $\angle DCB = \angle DAB$ [Since opposite angles of a parallelogram are equal] (iii) OC = OA[Since diagonals of a parallelogram bisect each other] (iv) $m\angle DAB + m\angle CDA = 180^{\circ}$ [Adjacent angles in a parallelogram are supplementary]


Ex 3.3 Question 2.

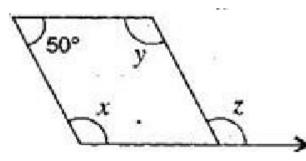
Consider the following parallelograms. Find the values of the unknowns x, y, z.



Note: For getting correct answer, read $3^\circ=30^\circ$ in figure (iii) Answer.

(i) $\angle \mathrm{B} + \angle \mathrm{C} = 180^{\circ}$

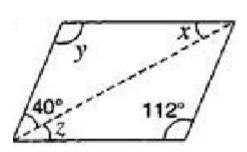
[Adjacent angles in a parallelogram are supplementary]


 $\Rightarrow x = 180^{\circ} - 100^{\circ} = 80^{\circ}$

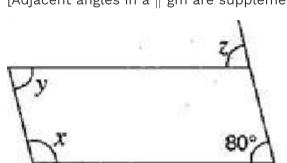
And $z=x=80^\circ$

[Since opposite angles of a parallelogram are equal] Also $y=100^{\circ}$

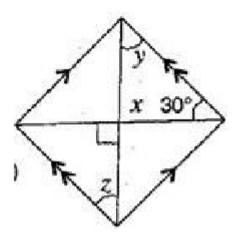
[Since opposite angles of a parallelogram are equal] (ii) $x+50^\circ=180^\circ$


[Adjacent angles in a $\|gm$ are supplementary]

 $\Rightarrow 40^\circ + y + x = 180^\circ$ [Angle sum property of a triangle]



(v) $y=112^\circ$ [Opposite angles are equal in a $\|{
m gm}$]


[Opposite angles are equal in a ||gm|] (v) $u = 112^{\circ}$

And $y = 80^{\circ}$ [Opposite angles are equal in a ||gm

 $\Rightarrow x = 180^\circ - 80^\circ = 100^\circ$

 $\Rightarrow y + x + 30^{\circ} = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow y + 90^{\circ} + 30^{\circ} = 180^{\circ}$ $\Rightarrow y + 120^{\circ} = 180^{\circ}$ $\Rightarrow y = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\Rightarrow z = y = 60^{\circ}$ [Alternate angles] (iv) $z = 80^{\circ}$ [Corresponding angles] $\Rightarrow x + 80^{\circ} = 180^{\circ}$ [Adjacent angles in a || gm are supplementary]

 $\begin{array}{l} \Rightarrow x = 180^{\circ} - 50^{\circ} = 130^{\circ} \\ \Rightarrow z = x = 130^{\circ} \\ \mbox{[Corresponding angles]} \\ \Rightarrow y = x = 130 \mbox{ degrees} \\ \mbox{[Since opposite angles of a parallelogram are equal]} \\ \mbox{(iii) } x = 90^{\circ} \\ \mbox{[Vertically opposite angles]} \end{array}$

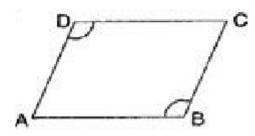
 $\Rightarrow 40^{\circ} + 112^{\circ} + x = 180^{\circ} \Rightarrow 152^{\circ} + x = 180^{\circ}$ $\Rightarrow x = 180^{\circ} - 152^{\circ} = 28^{\circ}$

And $z=x=28^\circ$

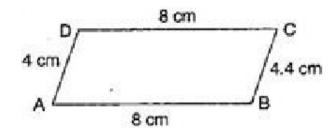
[Alternate angles]

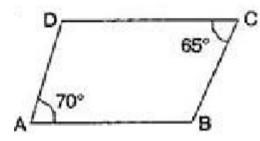
Ex 3.3 Question 3.

Can a quadrilateral ABCD be a parallelogram, if: (i) $\angle D + \angle B = 180^{\circ}$? (ii) AB = DC = 8 cm, AD = 4 cm and BC = 4.4 cm ? (iii) $\angle A = 70^{\circ}$ and $\angle C = 65^{\circ}$?


Answer.

(i) $\angle \mathrm{D} + \angle \mathrm{B} = 180^\circ$

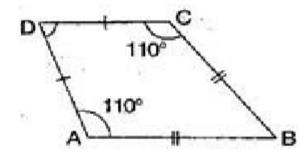

It can be, but here, it needs to be a square or a rectangle.



(ii) No, in this case, because one pair of opposite sides are equal and another pair of opposite sides are unequal. So, it is not a parallelogram.

(iii) No. $\angle A \neq \angle c$.

Since opposite angles are equal in parallelogram and here opposite angles are not equal in quadrilateral *ABCD*. Therefore it is not a parallelogram.

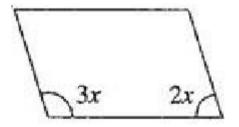


Ex 3.3 Question 4.

Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measures.

Answer.

ABCD is a quadrilateral in which angles $\angle A=\angle C=110^\circ.$ Therefore, it could be a kite.



Ex 3.3 Question 5.

The measure of two adjacent angles of a parallelogram are in the ratio 3 : 2. Find the measure of each of the angles of the parallelogram.

Answer.

Let two adjacent angles be 3x and 2x.

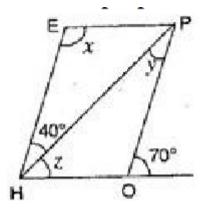
Since the adjacent angles in a parallelogram are supplementary.

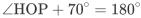
 $\therefore 3x + 2x = 180^{\circ}$ $\Rightarrow 5x = 180^{\circ}$ $\Rightarrow x = \frac{180^{\circ}}{5} = 36^{\circ}$ $\therefore \text{ One angle} = 3x = 3 \times 36^{\circ} = 108^{\circ}$ And Another angle = $2x = 2 \times 36^{\circ} = 72^{\circ}$ Ex 3.3 Question 6.

Two adjacent angles of a parallelogram have equal measure. Find the measure of the angles of the parallelogram.

Answer.

Let each adjacent angle be x.

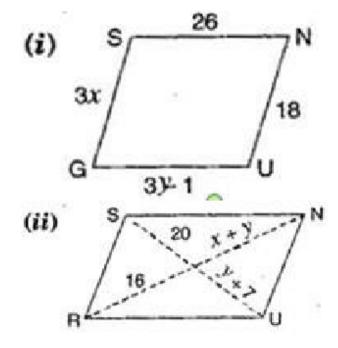

Since the adjacent angles in a parallelogram are supplementary.


$$egin{aligned} &\therefore x+x = 180^\circ \ &\Rightarrow 2x = 180^\circ \ &\Rightarrow x = rac{180^\circ}{2} = 90^\circ \end{aligned}$$

Hence, each adjacent angle is 90° .

Ex 3.3 Question 7.

The adjacent figure HOPW is a parallelogram. Find the angle measures x = y and z. State the properties you use to find them.



Answer.

Here $\angle \text{HOP} = 180^{\circ} - 70^{\circ} = 110^{\circ}$ [Angles of linear pair] And $\angle \text{E} = \angle \text{HOP}$ [Opposite angles of a ||gm are equal] $\Rightarrow x = 110^{\circ}$ $\angle \text{PHE} = \angle \text{HPO}$ [Alternate angles] $\therefore y = 40^{\circ}$ Now $\angle \text{EHO} = \angle \text{O} = 70^{\circ}$ [Corresponding angles] $\Rightarrow 40^{\circ} + z = 70^{\circ}$ $\Rightarrow z = 70^{\circ} - 40^{\circ} = 30^{\circ}$ Hence, $x = 110^{\circ}, y = 40^{\circ}$ and $z = 30^{\circ}$

Ex 3.3 Question 8.

The following figures GUNS and RUNS are parallelograms. Find X and $y_{
m - (Lengths\,are}$ in m cm)

Answer.

(i) In parallelogram GUNS, GS = UN

[Opposite sides of parallelogram are equal]

 $\Rightarrow 3x = 18$

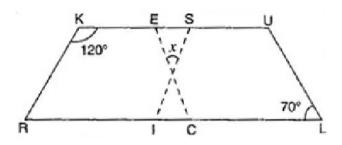
$$\Rightarrow x = rac{18}{3} = 6 ext{ cm}$$

Get More Learning Materials Here : 🗾

R www.studentbro.in

Also GU = SN [Opposite sides of parallelogram are equal] $\Rightarrow 3y-1=26$

 $\Rightarrow 3y = 26 + 1$ $\Rightarrow 3y = 27$ $\Rightarrow y = \frac{27}{3} = 9 \text{ cm}$


Hence, X = 6 cm and X = 9 cm. (ii) In parallelogram RUNS, y + 7 = 20[Diagonals of ||gm bisects each other] $\Rightarrow y = 20 - 7 = 13$ cm

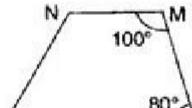
And x + y = 16 $\Rightarrow x + 13 = 16$ $\Rightarrow x = 16 - 13$ $\Rightarrow x = 3 \text{ cm}$

Hence, $x=3~{
m cm}$ and $y=13~{
m cm}.$

Ex 3.3 Question 9.

In the figure, both RISK and CLUE are parallelograms. Find the value of x.

Answer.

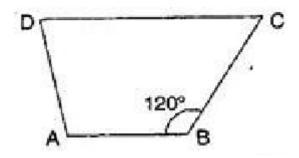

In parallelogram RISK, $\angle \text{RIS} = \angle \text{K} = 120^{\circ}$ [Opposite angles of a ||gm are equal] $\angle m + 120^{\circ} = 180^{\circ}$ [Linear pair] $\Rightarrow \angle m = 180^{\circ} - 120^{\circ} = 60^{\circ}$ And $\angle \text{ECI} = \angle \text{L} = 70^{\circ}$

 $\begin{array}{l} [\texttt{Corresponding angles}] \\ \Rightarrow m + n + \angle \texttt{ECI} = 180^{\circ} \\ [\texttt{Angle sum property of a triangle}] \\ \Rightarrow 60^{\circ} + n + 70^{\circ} = 180^{\circ} \\ \Rightarrow 130^{\circ} + n = 180^{\circ} \\ \Rightarrow n = 180^{\circ} - 130^{\circ} = 50^{\circ} \end{array}$ Also $x = n = 50^{\circ}$

[Vertically opposite angles]

Ex 3.3 Question 10.

Explain how this figure is a trapezium. Which of its two sides are parallel?


Answer.

Here, $\angle M + \angle L = 100^{\circ} + 80^{\circ} = 180^{\circ}$ [Sum of interior opposite angles is 180°] \therefore NM and KL are parallel. Hence, KLMN is a trapezium. **Ex 3.3 Question 11.**

Find $m\angle c$ in figure, if $\overline{AB}\|\overline{DC}$

Answer.

Here, $\angle B + \angle c = 180^{\circ}$ $[\because \overline{AB} \| \overline{DC}]$ $\therefore 120^{\circ} + m \angle C = 180^{\circ}$ $\Rightarrow m \angle C = 180^{\circ} - 120^{\circ} = 60^{\circ}$ Ex 3.3 Question 12.

Find the measure of $\angle P$ and $\angle S$ if $\overline{SP} \| \overline{RQ}$ in given figure. (If you find $m \angle \mathbf{R}$ is there more than one method to find $m \angle P$)

Answer.

Here, $\angle P + \angle Q = 180^{\circ}$ [Sum of co-interior angles is 180°] $\Rightarrow \angle P + 130^{\circ} = 180^{\circ}$ $\Rightarrow \angle P = 180^{\circ} - 130^{\circ}$ $\Rightarrow \angle P = 50^{\circ}$ $\because \angle R = 90^{\circ}$ [Given] $\therefore \angle s + 90^{\circ} = 180^{\circ}$ $\Rightarrow \angle s = 180^{\circ} - 90^{\circ}$ $\Rightarrow \angle s = 90^{\circ}$ Yes, one more method is there to find $\angle P$. $\angle s + \angle R + \angle Q + \angle p = 360^{\circ}$ [Angle sum property of quadrilateral] $\Rightarrow 90^{\circ} + 90^{\circ} + 130^{\circ} + \angle P = 360^{\circ}$ $\Rightarrow 310^{\circ} + \angle P = 360^{\circ}$ $\Rightarrow \angle P = 360^{\circ} - 310^{\circ}$

 \Rightarrow $\angle \mathrm{P} = 50^{\circ}$

<u>Exercise 3.4 (Revised) - Chapter 3 - Understanding Quadrilaterals - Ncert</u> <u>Solutions class 8 - Maths</u>

NCERT Solutions for Class 8 Maths Chapter 3 -Understanding Quadrilaterals

Ex 3.4 Question 1.

- State whether true or false:
- (a) All rectangles are squares.
- (b) All rhombuses are parallelograms.
- (c) All squares are rhombuses and also rectangles.
- (d) All squares are not parallelograms.
- (e) All kites are rhombuses.
- (f) All rhombuses are kites.
- (g) All parallelograms are trapeziums.
- (h) All squares are trapeziums.

Answer.

- (a) False. Since, squares have all sides are equal.
- (b) True. Since, in rhombus, opposite angles are equal and diagonals intersect at mid-point.
- (c) True. Since, squares have the same property of rhombus but not a rectangle.
- (d) False. Since, all squares have the same property of parallelogram.
- (e) False. Since, all kites do not have equal sides.
- (f) True. Since, all rhombuses have equal sides and diagonals bisect each other.
- (g) True. Since, trapezium has only two parallel sides.
- (h) True. Since, all squares have also two parallel lines.

Ex 3.4 Question 2.

Identify all the quadrilaterals that have:

- (a) four sides of equal lengths.
- (b) four right angles.

Answer.

- (a) Rhombus and square have sides of equal length.
- (b) Square and rectangle have four right angles.

Ex 3.4 Question 3.

- Explain how a square is:
- (a) a quadrilateral
- (b) a parallelogram
- (c) a rhombus
- (d) a rectangle

Answer.

(i) A square is a quadrilateral, since it has four equal lengths of sides.

(ii) A square is a parallelogram, since it contains both pairs of opposite sides equal.

(iii) A square is already a rhombus. Since, it has four equal sides and diagonals bisect at 90° to each other.

(iv) A square is a parallelogram, since having each adjacent angle a right angle and opposite sides are equal.

Ex 3.4 Question 4.

Name the quadrilateral whose diagonals:

(i) bisect each other.

(ii) are perpendicular bisectors of each other.

(iii) are equal.

Answer.

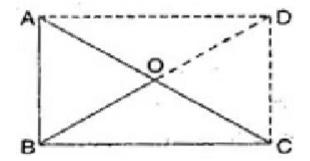
(i) If diagonals of a quadrilateral bisect each other then it is a rhombus, parallelogram,

rectangle or square.

(ii) If diagonals of a quadrilateral are perpendicular bisector of each other, then it is a rhombus or square.

(iii) If diagonals are equal, then it is a square or rectangle.

Ex 3.4 Question 5.


Explain why a rectangle is a convex quadrilateral.

Answer.

A rectangle is a convex quadrilateral since its vertex are raised and both of its diagonals lie in its interior.

Ex 3.4 Question 6.

ABC is a right-angled triangle and O is the mid-point of the side opposite to the right angle. Explain why O is equidistant from A, B and C. (The dotted lines are drawn additionally to help you.)

Answer.

Since, two right triangles make a rectangle where O is equidistant point from A, B, C and D because O is the mid-point of the two diagonals of a rectangle.

Since AC and BD are equal diagonals and intersect at mid-point.

So, O is the equidistant from A, B, C and D.

